Engaged Employer

## Interview Question

Interview New York, NY

# Given a 2D rectangular matrix of boolean values, write a

function which returns whether or not the matrix is the same when rotated 180 degrees. Additionally verify that every boolean true is accessible from every other boolean true if a traversal can be made to an adjacent cell in the matrix, excluding diagonal cells. That is , (x , y ) can access the set [ ( x + 1 , y ) , ( x - 1 , y ) , (x , y - 1 ) , (x , y + 1 ) ] For example, the matrix { { true , false } , { false , true } } should not pass this test.

1

if the matrix A is a11, a12 a21, a22 after 180 rotation a22, a21 a12, a11 so a11 == a22 and a12 == a21 function is BOOL isSame = (a11==a22) && (a12==a21) done.

David C on Jun 17, 2013
0

public static boolean isMatrixEqualToFlip(boolean[][] matrix) { if (matrix==null || matrix.length == 0 || matrix[0].length == 0) { return true; } int rowlen = matrix[0].length; int highInd = matrix.length/2; int lowInd = highInd - 1 + (matrix.length % 2); System.out.println("rowlen: " + rowlen + " high: "+ highInd + " low: " + lowInd); while (lowInd >= 0) { System.out.println("high: " + highInd + " lowInd: " + lowInd); for(int i=0; i < rowlen; i++) { System.out.println("Compare " + matrix[highInd][i] + " to " + matrix[lowInd][rowlen - 1 - i]); if (matrix[highInd][i] != matrix[lowInd][rowlen - 1-i]) { return false; } } lowInd--; highInd++; } return true; }

Ben H on Jul 26, 2013
0

def rotate180(mtx): col=mtx col.reverse() for row in col: row.reverse() print col

Anon on Jul 28, 2013
0

If the matrix is: true, false false, true 90 degree rotation would be: false, true true, false 180 degree rotation would be: true, false false, true If we define the matrix as: a11, a12 a21, a22 Then the solution would be: boolean isMatch = !(a11 && a12) && !(a11 && a21) && !(a12 && a22) && !(a21 && a22);

kaetem on May 9, 2014