Trading assistant Interview Questions | Glassdoor

Trading assistant Interview Questions

81

trading assistant interview questions shared by candidates

Top Interview Questions

Sort: RelevancePopular Date

What the probability of getting 2 consecutive heads in a total of N tosses (I found this one pretty hard and I didn't figure out the right answer at the time.)

7 Answers

Do you mean Prob(at least 1 observation of 2 consecutive heads appears) ?? Then since the subsets can be: 1. all tails 2. 1 head 1 tail 1 head 1 tail .... 3. at least 2 heads consecutively appear once So Pr(3) = 1- Pr(1) - Pr(2) = 1- (1/2)^N - (1/2)^N = 1 - power(1/2,N-1)

I think the answer should be this: Since the probability of getting two heads in a row and getting two tails in a row is the same, we only need to figure out the probability of the total. The remaining event is: 1 head 1 tail......due to different order, events should be 2 Therefore the probability=0.5(1-2(1/2)^N)=0.5(1-(1/2)^(N-1))

Only solution I could think of, which took quite some time, was to actually start by drawing a tree of possible outcomes. From there, I could see only three different states at each node. Either I am in a state similar to my initial state (when I toss a tail), I can also be in tilt state (I have just flipped heads after flipping a tail) or I am in the done state (I have just flipped heads after having flipped heads before). I consider that someone would only continue flipping if he/she has not flipped two heads in a row. That is, is not in the done state. That is, for any toss level N, it wrong to assume that number of nodes is equal to 2^N. It will be strictly smaller as of level N = 3. Anyway, after 3-4 levels drawn, one should see a pattern, that is, the number of tails, or initial state nodes (is), at a level N is equal to the number of is's I had at level N-1 + the number of is's I had at level N-2. We can thus write: is(N) = is(N-1) + is(N-2). we then realize that at every level N, the number of tilt nodes (t) is equal to the number of initial states from the previous level. That is: t(N) = is(N-1) That makes sense, because on the level N-1, all initial states output one tail (becoming a new initial state at level N) and a heads (becoming a tilt state at level N). the other states of level N-1 are either done (so no continuation) or tilt. The possible outcomes of a tilt state are either done or initial state (if I flip heads again, I am done, so I can't go from tilt to tilt.) One then realize that following the same logic, the number of done (d) nodes for a level N is given by: d(N) = t(N-1) = is(N-2) that is, at every level (as of the second level, or two tosses), I will have a number of done outcomes equal to the number of initial states to levels (or tosses) ago. So the general recursive formula to get the number of done nodes for a certain level really is: d(N) = is(N-2) = is(N-3) + is(N-4) We note, by definition: is(N) = 0, is N<0 is(N) = 1, if N = 0, or 1 is(N) = is(N-1) + is(N-2) otherwise. Furthermore, the probability of being at any node of a level N is simply (1/2)^N. So if I want to find the probability that I observed at least one occurrence of 2 heads in a row. I simply add the number of done nodes from level 1 to N multiplying them by the probability of them occurring at each level. That is: P(hh after N tosses) = sum(from i = 1 to N) (d(i).(1/2)^i). E.g. for N = 2, I get: d(1).1/2 + d(2).(1/4) = s(-1).1/2 + s(0).(1/4) = 0 + 1/4. We know that this is true. you can test it for a larger number of tosses and see it is true. as N goes to infinity, the sum will converge to 1, as I have theoretically no chance of never tossing 2 heads in a row if I throw a coin an infinity number of times. I haven't found a solution that didn't use recursions. There probably is one, I'd be interested in seeing one.

One or more comments have been removed.
Please see our Community Guidelines or Terms of Service for more information.

Roll a fair dice, if it's a prime number, you pay me that number times $100, if it's not a prime number, I pay you that number times $100. Consider 1 as a prime number. How much willing to pay to play this game.

7 Answers

What is the expected value to you of the following game: You and another person have 3 coins each. You both flip all of your coins and if your three coins show the same number of tails as the other person, you pay them $2, otherwise they pay you $1.

4 Answers

If you have a deck of cards split into 4 piles and was offered 1:1 odds to draw a face card (J Q K A) from at least one of the piles, would you take the game? Why or why not?

4 Answers

What is 29^2?

4 Answers

How many degrees separate the hands on an analog clock at 3:15?

3 Answers

What are odds of getting EXACTLY two (2) heads if you flip a fair coin 10 times?

2 Answers

If you roll a dice and and receive a dollar for whatever number you role (i.e. $1 for rolling a 1, $2 for a 2 etc.), what is the expected value of rolling this dice

2 Answers

One or more comments have been removed.
Please see our Community Guidelines or Terms of Service for more information.

When is an american call out of the money

2 Answers

Would you take 10 to 1 odds that a coin will land on heads 4 times in a row?

1 Answer
110 of 81 Interview Questions